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System Architecture of
A Massively Parallel Programmable Video Co-Processor
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College Park, MD 20742
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ABSTRACT

Modern video applications call for computationally intensive data processing at very high data rate. In
order to meet the high-performance/low-cost constraints, the state-of-art video processor should be a pro-
grammable design to perform various tasks in video application whereas the computational power and the
manufacturing cost should not be sacrificed for exchange of such flexibility. In this paper, we present a pro-
grammable video co-processor design for numerically intensive front-end video/image communications. The
resulting system is a massively parallel architecture that is capable of performing most low-level computa-
tionally intensive tasks including FIR/IIR filtering, subband filtering, discrete orthogonal transforms (DT),
adaptive filtering, and motion estimation, for the host processor. Also, an interconnection network is used
to configurate the system for desired data paths. Since the properties of each programmed function such
as parallelism and pipelinability have been fully exploited in the design, the computational power of this
co-processor is as fast as that of the ASIC designs which are optimized for individual specific applications.
We also show that the system can be easily reconfigurated to perform multirate FIR/IIR/DT operations at
negligible hardware overhead. Therefore, we can cope with extremely high-speed data by using the same
processing elements. This feature can also be applied to the low-power implementation of this co-processor
since the multirate operations can “compensate” the increased delay caused by the low supply voltage in
the low-power design without hindering the system performance. The programmable/high-speed properties
of the proposed co-processor design makes it very suitable for video-rate applications.

This work was supported in part by the ONR grant N00014-93-10566 and the NSF NYI Award
MIP9457397.
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1 Introduction

Modern communication services such as high-definition TV (HDTV), video-on-demand services (VOD), and
PC-based multimedia applications call for computationally intensive data processing at video data rate which
includes low-level tasks like discrete cosine transform (DCT) and filtering (convolution) operations as well
as medium-level tasks like motion estimation (ME), variable length coding (VLC), and vector quantization
(VQ). All these tasks require millions of basic operations (addition/multiplications) per second to ensure
the real-time performance of those video applications. As a consequence, the traditional general-purpose
programmable digital signal processing (DSP) processor is not applicable under such speed constraint.
Although the performance of the DSP processor can be improved by utilizing advanced VLSI technology
and special arithmetic kernels [1]{2], the manufacturing cost as well as the complexity of the design will be
enormously increased. This approach is referred to as the technology-driven solution [3]. On the other hand,
dedicated VLSI application-specific integrated circuit (ASIC) chip that is optimally designed for a given
function can handle the demanding computational tasks. However, such an approach will also increase the
manufacturing cost and system area since a collection of ASIC chips are required for the different tasks in
video applications. Hence we try to find a programmable video processor design that has the flexibility of
a general DSP processor while it still can meet the stringent speed requirement like the ASIC chips.

Recently, it has been observed that in order to handle the signal processing applications in a very
efficient way, the properties of the DSP algorithms should be fully exploited so as to find the parallelism and
pipelinability for very high-speed implementations of those algorithms. As an example, the rotation-based
CORDIC processor is suggested as a basic module to perform FIR and IIR filtering in a fully pipelined way
[4][5]. Also, an inner-product processing kernel was found to be the common part for some signal processing
operations [3]. These solutions exploit the inherent properties of the algorithms and are referred to as the
algorithm-driven solutions [3].

The major goal of this paper is to integrate the rotation-based FIR/IIR architecture, Quadrature Mirror
Filter (QMF) lattice structure [6], discrete transform (DT) architecture [7][8], adaptive lattice filter [9], and
DCT-based motion estimation scheme [10], into one universal programmable architecture. It will serve as
a co-processor in the video system to perform all front-end computationally intensive functions for the host
processor. We will first examine the inherent properties of each function, then find the common rotation-
based computational modules that can serve as the basic processing elements. Hence, this design is also an
algorithm-driven solution for video applications but is much more general-purpose. The resulting system
consists of an array of identical programmable modules and one programmable interconnection network.
Each programmable module will act as the basic computational module in each programmed function by
setting suitable parameters and switches. The interconnection network is used to connect the modules and
to combine the appropriate module outputs according to the data paths. The proposed architecture is very
suitable for VLSI implementation due to its modularity and regularity.

The second goal of this paper is to improve the speed performance of the system based on the multirate

approach [11]. In video signal processing, the major constraint is the processing speed of the video processor.
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Such speed constraint will result in the use of expensive fast multiplier/adder circuits or full-custom design.
Thus, the cost and the design cycle will increase drastically. The multirate approach is a powerful tool
for high-speed/low-power DSP applications [12]. By employing the multirate architecture with decimation
factor equal to two, we can process data at, for example, 100 MHz rate while using only 50 MHz processing
elements. Thus, we can speed up the system at the algorithmic/architectural level without using expensive
high-speed processing elements. We will show that by simply setting new parameters to the programmable
modules and reconfigurating the interconnection network, we can speed up the system by performing the
multirate operations on-the-fly without modifying the overall architecture.

In the last part, we will show how to incorporate the feature of adaptive filtering into our co-processor
design. The recursive least-squares (RLS) filter, which is widely used in channel equalization, system
identification, and image restoration, will become another computationally intensive data processing used
in portable video equipments since wireless communication requires fast adaptation to the highly non-
stationary mobile channel. We will show that, with little modification to the programmable module design,
the proposed co-processor can also perform the QR-decomposition based RLS lattice algorithm (QRD-LSL)
[9][13, Chap.18] in a fully pipelined way.

The organization of the this paper is as follows: Section 2 presents the basic programmable co-processor
design for the FIR, 1IR, QMF filtering, and discrete transforms. In Section 3, the speed up of the co-
processor design based on the multirate approach is discussed. Later the incorporation of the QRD-LSL

array into our co-processor design is presented in Section 4 followed by the conclusions.

2 Video Co-processor Design for the FIR/QMF /IIR/DT

In this section, the design of the video co-processor under normal operation (without speed-up) is discussed.
We first examine the the basic operations of the FIR filtering, QMF bank, IIR filtering, and discrete
orthogonal transforms (DT), to find the basic computational modules. Later, a universal programmable
module which integrates those basic computational modules in FIR/QMF/IIR/DT is derived. We will
show that, by setting appropriate parameters to the module and connecting them via a programmable
interconnection network, we are able to perform all functions in the FIR/QMF/IIR/DT in a fully-pipelined

way.

2.1 Basic Module in FIR

The finite impulse response (FIR) filter is widely used in the areas of image processing and equalization. In
addition to the multiply-and-accumulate (MAC) implementation of the filtering operation, an alternative
realization of the FIR filter is the lattice structure as shown in Fig.1 [14]. It consists of N basic lattice
sections that are connected in a cascade form. The advantages of the lattice structure over the MAC
implementation is its robustness to the coeflicient quantization effect and the smaller dynamic range due to

the orthogonal operation used in each lattice.
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Given a Nth-order FIR transfer function
N-1
H(z)=1- Z N Gl (1)
m=0

the FIR lattice parameters can be computed as follows [15]:

1. Instialization: a%v—l) =am, m=0,1,...,N—1.

2. Fori=N-1,N-2...,0

ki = az(.i) ,
ai-b) = % m=0,1,...,(—1). (2)
end
where the parameter k;’s, 1 = 0,1,...,N — 1, are known as the reflection coefficients, or the PARtial

CORrelation coefficients (PARCOR) in the theory of linear prediction [16]. After k;’s are computed, the
lattice section of the FIR filter can be described by

Zout _ 1 —k; Tin (3)
iElout —ki 1 xlz'n ,

or equivalently

1. For |k;| <1,
[ 1 —k 1T Tr -
Zout _ 1-k? 1—k2 i/ 1 k‘zz 0 Tin
Zout \/__1%_1}7 ll_k? I 0 V 1—k; 11 Tin ]
[ cosh6; sinh6; | [ 1k 0 | [ zm |
= . 5 , (4)
sinh#; cosh6; 0 91—k || %
with
0; = tanh_l(—ki). (5)
2. For |k;| > 1,

/ —sign (ki) L] —sign(k;)\/k? — 1 Tin

Lout V-1 VRt

_ [ coshd; sinh; —sign(k;)y/k2 — 1 0 zl, ©)
ginh8; cosh; 0 —sign(k;)\/kZ — 1 Tin |

[ T out :| _ \/|k%1~1 _\S;Z?(—Ic{) [ —Sign(ki) V kiQ -1 0 ] I: m{m jl
0
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where sign(k;) denotes the sign of k; and @ is defined by

0; = tanh~1(—1/k;). (7)

In general, (3) is preferred for the implementation using general-purpose multipliers. In our unified design,
we will employ (4) and (6), which can be implemented by using the CORDIC processor in hyperbolic mode
[5] together with two scaling multipliers, to realize the basic modules (see Fig.1(a)(b)). Note that we need to
swap the two inputs for the case |k;| > 1 since the input vector is inverted in (6). These two basic modules

constitute the FIR lattice structure as shown in Fig.1(c).

2.2 Basic Module in QMF

The Quadrature Mirror Filter (QMF) plays a key role in image compression and subband coding [17][18].
Recently, the two-channel paraunitary QMF lattice was proposed [6]. It possesses all the advantages of the
lattice structure such as robustness to coefficient quantization, smaller dynamic range, and modularity. Such
properties are preferred to the MAC-based realization when the filter bank is implemented using fixed-point
arithmetic. Fig.2 shows the QMF lattice structure, where part (c) is the analysis bank and part (d) is the
synthesis bank. We can see that the QMF lattice is very similar to the FIR lattice except that the inputs of
the lattice become the decimated sequences of the input signal. As a consequence, the module in Fig.1(b)
can be readily used for the QMF lattice by setting the scaling multiplers equal to one and the CORDIC
processor to the circular mode.

It has been shown in [6] that every two-channel (real-coefficient, FIR) paraunitary QMF bank can be
represented using the QMF lattice. Given a pre-designed power-symmetric FIR analysis filter Hy(z) with
unit sample response ho(n),n =0,1,..., N, we can first find the unit sample response of the other analysis
filter Hi(z) by

hi(n) = (—=1)"ho(N —n). (8)

Then the rotation angle 6; in each QMF module can be computed by [11, chap.6]:
1. Initialization: H(g‘])(z) = Hy(z) and Hf‘l)(z) = H(z) with N =2J + 1.
9. Fori=JJ—1,...,0
1+ad)Hf V(@) = HY () - il (),
(1+ad)z2H{ V() = wH) () + H(2),
0; = tan"lay, (9)
end

The coefficient ; is computed by setting the highest power of z~! in H((,i)(z) - o H fi) (z) equal to zero.
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2.3 Basic Module in IIR

Next we want to consider the basic module for infinite impulse response (IIR) filtering. The lattice structure
for an IIR system (all-pole and ARMA) [14] is shown in Fig.3. Although the basic lattice module in TIR
is similar to the one in FIR lattice, the opposite data flow in the IIR module makes it difficult to be
incorporated into our unified design. Besides, the modularity of the lattice structure no longer exists if we
want to implement a general IIR (ARMA) filter (see Fig.3(b)). Therefore, we try to find an IIR module that
has similar data path as in the FIR/QMF lattice while retaining the modularity property of the design.

2.3.1 Second-order IIR Lattice Structure

Fig.4 shows the lattice structure that can be used to realize a second-order IIR. It is also known as the
“couple-form” of the second-order IIR filter which is robust to the coefficient quantization error under fixed-
point arithmetic [15, chap.6]. It can be shown that the transfer functions of the two outputs are given
by

z)  r(kocos® + kysinf) — rlkyz!

_ Yo(z) _
Holz) = X(z)  1-—2rcosfz1+4r2z-2 (10)
~ Yi(z) r(kicos® —kgsinf) — r2k 271

= = 1
() X(z) 1—2rcosfz=1 41222 (11)

Now given an even-order real-coefficient IIR (ARMA) filter H(z), we can first rewrite it in the cascade form:
N/2-1
H(z) =K H H,;(Z), (12)
=0
where K is a scaling constant ! and each subfilter H;(z) is of the form

14zt + diz™2

HZ(z) - 1+ a2t +b;272
_ 1 -1 ¢ +dizt
To14 a; 2"t + bz~2 # 14 a;z7! + bz—2
= Ai,o(z) + Z_lAi’l(Z). (13)

Comparing (10) and (11) with (13), we see that A4;0(2) and 4;1(z) can be realized by either Ho(z) or H;(z)
with appropriate settings of the parameters kg, k1,7, and 8. The conversion of the parameters is derived in
Appendix, where Hy(z) is chosen for the realization.

Now based on (12) and (13), we can realize H(z) using the signal diagram depicted in Fig.5, in which
each stage performs the filtering for H;(z) and all A;p, A;1, 4 = 0,1,...,N/2 — 1, are realized by the

second-order IIR module in Fig.4.

'Here, we have assumed that K = 1. This simple scaling operation can be done by the host processor after it collects the
outputs from the video co-processor.
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2.4 Basic Module in Discrete Transforms

Performing the discrete transforms (DT) based on the rotation circuit has been extensively studied in the
literature [5]. Recently, Frantzeskakis et al. [7][8] proposed a unified rotation-based architecture for the DT.
By exploiting the “shift property” and “periodicity property” of the orthogonal transforms, the authors
have shown that any orthogonal transform can be implemented using a time-recursive architecture. In the
following, we will first review the time-recursive MLT architecture in [7][8]. Later, we will show how this

MLT architecture can be used to realize most of the orthogonal transforms.

2.4.1 Time-Recursive MLT Architecture

The Modulated Lapped Transform (MLT) is defined as [19]:

2N-1
Xumrr(k) = ck\/% Z sin %(n + %) cos[%(k + %)(n + % + —J;)]x(n) (14)
n=0

for k = 0,1,...,N — 1, where ¢, = (—1)(#*t2/2 if k is even, and ¢;, = (—1)*~1/2 if k is odd. After some

algebraic manipulations, the MLT can be decomposed into

Xumrr(k) = —cp| Xo(k + 1) + Xg(k) ] (15)
where
L-1
Xc(k) = B cos[(2n + 1w + me)z(n), (16)
n=0
L-1
Xs(k) = B sin[(2n+ L)wy + mela(n), (17)
n=0
with block size L = 2N and
A 1 A Tk AT 1
ﬁ=ﬁ, k= o and 77k=§(k+§)- (18)

(15) describes how the two functions, X¢ (k) and Xs(k), are combined together to obtain the MLT coeffi-
cients. In the following discussions, we shall refer to (15) as the combination function.
In [7][8], a rotation-based module was derived for the dual generation of X¢(k) and Xs(k) as depicted

in Fig.6(a), where the scaling multipliers and the rotation operation are given by

b o { for } _ ! Beos((2L + Dw + 1) 19)

fik Bsin((2L + Dwy + k)
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and

Ry

(20)

—sinf cos —sin(2wg) cos(2wy)

[ cos 6y, sinOk] _[ cos(2wy,) sin(Zwk)}

respectively. The rotation-based module works in a serial-input-parallel-output (SIPO) way: the block input
data is fed serially into the module. After the updating of the last datum is completed, the values of X¢ (k)
and Xg(k) in (16) and (17) are available at the module outputs.

The aforementioned module can be used as a basic building block to implement MLT based on (15).
Fig.6(b) illustrates the overall time-recursive MLT architecture for the case N = 8. It consists of two parts:
One is the module array which computes X (k) and Xg(k), K = 0,1,...,N — 1, in parallel. The other is
the interconnection network which selects and combines the array outputs to generate the MLT coefficients
according to the combination function defined in (15).

In [12], it has been observed that the MLT architecture in Fig.6 can realize most existing discrete sinu-
soidal transforms by setting appropriate parameters and defining the combination functions. For example,
Xc(k) in (16) is equivalent to the DCT by setting

km

L=N, ﬁ—__ck7 wk=m7

and n; =0, (21)

where \/_'
1 .
. v, ifk=0
Cr = (22)
k { \/—% , otherwise.
is the scaling factor of the DCT/IDCT. As a result, the MLT module array in Fig.6 can compute the DCT
in parallel. The other example is the DFT with real-valued inputs. With the following parameter setting

L=N, = \/iﬁ wg = —T]” and ;= —wy, (23)
(16) and (17) become
1 &= o 1 &= o
Xe(k) = Wi Z COS(TV—’m)w(n)’ Xs(k) = \/_N z_: Sin(Tkn)m(n)’ (24)

which are the real part and the imaginary part of the DFT, respectively. The DHT can be computed using

the same parameter setting as the DFT except that the interconnection network in Fig.6(b) performs as
Xpur(k) = Xc(k) + Xs(k). (25)

The parameter settings as well as the corresponding combination functions for most DT are summarized in

Table 1.
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2.5 Unified Module Design

From Fig.1, Fig.2, Fig.4, and Fig.6, we observe that all the architectures share the common computational
module with only some minor differences in the data path, the module parameters (multiplier coefficients
and rotation angle), and the way the modules are connected. We are thus motivated to integrate those basic
modules into one universal programmable module.

Fig.7 shows the proposed programmable module. It consists of six switches, four scaling multipliers and
one rotation circuit. The switch set S £ [s0s152538485] controls the data path inside the module. The switch
pair s and s; select the input from either in; or in}: With sps; = 00, in; becomes the common input of the
lattice which is required in the first stage of FIR and in the IIR module. Using s9s; = 10, we can swap the
inputs for the FIR lattice when |k;| > 1. Switches sy and s3 decide if the delay element is used or not: With
s9s3 = 01, the lower-left delay element is included in the data path, which is required in the FIR/QMF
lattice (except the first stage in QMF banks). With the setting sys3 = 11, the delay element in Fig.5 can be
incorporated into the module A;;. Therefore, we do not need to implement it explicitly in the IIR filtering
operation. The last switch pair is s4 and s5. They control the two feedback paths in the module: When
8485 = 11, the delayed module outputs will be added with the current inputs as in the IIR and DT case. The
setting s455 = 00 will disconnect the feedback paths. The scaling multipliers and the rotation circuit are
commonly used in all basic modules of the FIR/QMF /IIR/DT. The parameters f; and 6; can be determined
from our discussions in Section 2.1-Section 2.4. The two extra multipliers r;’s at the outputs of the rotation
circuit are required if we want to incorporate IIR filtering function into this universal design. The complete
settings of the programmable module for the FIR/QMF/IIR/DT are listed in Table 2.

2.6 Video Co-processor Design

Based on the above programmable module, we are ready to design the video co-processor that is capable of
performing parallel implementation for any function in the FIR/QMF/IIR/DT. Fig.8 shows the video co-
processor architecture under the FIR mode. It consists of two parts: One is the programmable module array
with P identical programmable modules. The other is the programmable interconnection network to connect
those programmable modules according to the data paths. In the FIR/QMF/IIR, the data are processed in
a serial-input-serial-output (SISO) way. Hence, the programmable modules need to be cascaded for those
operations. For example, the FIR modules can be connected by setting the interconnection network as
shown in Fig.8. The connections of IIR modules can be also achieved using the network setting in Fig.9.
On the other hand, the DT architecture in Section 2.4 performs the block transforms in a SIPO way. The
interconnection network will be configurated according to the combination functions defined in Table 1. The
detailed settings of the interconnection network used in this paper (Type I-IX) are described in Table 3.
The operation of the co-processor is as follows: In the initialization mode, the host processor will compute
all the necessary parameters fj, 4, 8; according to the function type (FIR/QMF/IIR/DT) and the function
to be performed. In general, the functions to be performed are determined beforehand. Hence, all the

parameters can be computed in advance so that the host processor can find the necessary parameters through
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table-look-up to reduce the set-up time in this mode. Next, the host processor needs to reconfigurate the
interconnection network according to the function type.

Once the video co-processor is initialized, it enters the ezecution mode. In the applications of FIR/IIR/QMF,
the host processor continuously feeds the data sequence into the co-processor. After the first output data is
ready, the processor can collect the filtering outputs in a fully pipelined way. In the block DT application,
the block input data is fed into the co-processor serially. After the last datum enters the unified module
array, the evaluations of X¢(k) and Xg(k) in (16) and (17) are complete. Then the interconnection net-
work will combine the module outputs according to the combination function defined in Table 1, and the
transform coefficients can be obtained in parallel at the outputs of the network. At the same time, the host
processor will reset all internal registers (delay elements) of the programmable modules to zero so that the
next block transform can be conducted immediately.

The real-time processing speed as well as the programmable feature of this design makes it very attractive
for video-rate applications. The programmable feature can significantly reduce the hardware cost compared
to the ASIC-based implementations. Meanwhile, we do not trade the processing speed for this flexibility
since all operations are performed in a parallel and fully-pipelined way as in the ASIC implementation.

Moreover, the resulting system is modular and regular, hence are suitable for VLSI implementation.

2.7 Design Examples

In what follows, we will use some design examples to demonstrate how to convert a given system specification
to the parameters used in the programmable modules. The orders of the numerator and the denominator
in the IIR ARMA filter are restricted to be even so that we can perform all the necessary decomposition.
Here, a 10-module co-processor is used to carry out the given function. As a result, the maximum order of
the FIR/IIR/QMF is 10 and the transform size of the DT is also limited to 10. For the DT, we will use an

8-point DCT as an example due to its prevalence in the application of transform coding.

2.7.1 FIR Filtering

Given the FIR transfer function

H(z) = 1-0.8843271 —0.1327272 — 1.121927% + 0.53282 7% — 0.88822~°
+ 0.1038275 — 0.37862~7 4 0.219527% — 0.109427°, (26)

we first apply (1)-(2) to compute all PARCOR coefficients:

ko = —0.4472, k; = -0.6917, ko
ks = 0.2655, k¢ = 02942, ky

—0.5865, k3 = —4.1573, k4 = 1.1595,
—0.1243, ks =  0.1094.

Then all parameters of each module, such as f; and 8;, can be found by using (4)-(7). The complete settings
are listed in Table 4(a).
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2.7.2 QMF Filtering

Suppose that the pre-designed power-symmetric low-pass filter described in [11, Example 5.3.2] is used for
the QMF filtering. We have the analysis filter

N-1
Ho(z) = ) ho(n)z™ (27)
n=0
with
ho(0) = 01605, hg(l) = 0.4156, he(2) = 0.4592, ho(3) =  0.1487,
ho(4) = —0.1642, ho(5) = —0.1245, ho(6) = 0.0825, ho(7) =  0.0888,
ho(8) = —0.0508, ho(9) —0.0608, ho(10) = 0.0352, ho(ll) =  0.0399,
ho(12) = —0.0256, ho(13) = —0.0244, ho(14) = 0.0186, ho(15) =  0.0135,
ho(16) = —0.0131, ho(17) = —0.0074, ho(18) = 0.0129, ho(19) = —0.0050.

We can go through (8)-(9) to find all 6;’s in the modules and the results are shown in Table 4(b).

2.7.3 IIR (ARMA) Filtering

Given the IIR (ARMA) filter
M i
H(z) ____ 1 + Z’L:l Dbiz

- ‘ 28
1+ 3K, gz (28)
with M =4, N = 10, and
p1 = —17314, py = 1.6788, p; = —0.7913, p; =  0.2304,
@ = 04036, g — 13227, g3 = 02376, g = 11558, g5 = 0.0047,
g = 06950, g7 = —00733, gg = 02735, qo = —0.0542, qo = 0.0788,
we first rewrite it in cascade form:
Hp — Lo L1847l 06400:72 | 10,6000z~ +0.36005"2
T 1-0.91922"1 + 0.42252-2 1 —0.75002"1 4+ 0.5625z—2
1 1
X 170800021 +0.640022 * 1+ 1.27282—1 + 0.81002-2
1
_ 29
* 1+0.64002-2 (29)

Following the steps described in (49)-(56), we can find the parameters used in each 2nd-order subfilter. The
corresponding settings are in Table 4(c).
2.7.4 Block DCT

For the block 8-point DCT, we can calculate fo;, fi1; and 6; for each module using (19)-(22). The settings
are listed in Table 4(d).
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3 Speed-Up of the Video Co-processor Architecture

In video signal processing, the fundamental bottleneck is the processing speed of the processing elements.
Although the above mentioned co-processor architecture has fully exploited the parallelism and pipelinability
for each programmed function, the input data rate is still limited by the speed of the adders and multipliers
inside the programmable module. In the video-rate applications such as HDTV, this speed constraint will
result in the use of expensive high-speed multiplier/adder circuits or full-custom design. Thus, the cost as
well as the design cycle will increase drastically.

Recently, the multirate FIR/IIR filtering architecture has been proposed [20][21]. Fig.10 shows the
multirate architecture to realize a given function H(z), where Hy(z), Hi(z) are the polyphase components
of H(z), and H(2) 2 Hi(z) + H2(2). As we can see, the multirate architecture can be readily applied
to very high-speed filtering operation. For example, it can process data at 100 MHz rate while only 50
MHz processing elements are required. Thus, the aforementioned speed constraint can be resolved at the
algorithmic/architectural level by trading some hardware overhead or chip area. In this section, we will show
that our video co-processor can be easily reconfigurated to perform the multirate FIR and ITR (ARMA)
filtering. That is, we can speed up the co-processor on the spot. Moreover, the incorporation of the multirate

DT architecture in [12] is also considered.

3.1 Multirate FIR Architecture

Given a Nth-order FIR filter

N
H(z) = hiz™, (30)
i=0
its polyphase components are given by [11]
N/2 . N/2 .
Ho(2*) = hipz™ %, Hi(2®) =) hiiz” %, (31)
=0 =0

with h; o = ho; and h;,1 = hoit1, for i =0,1,... ,N/2. We also have

N/2
H(z%) = Hy(2?) + H\(2?) = Z hiz™2% (32)
=0
where izz = hijpo + h;1, for i = 0,1,..., %’— 2, The implementation of the multirate FIR is as follows: We

first implement each (%)th—order FIR subfilter using the FIR lattice structure discussed in Section 2.1. The
resulting architecture is depicted in Fig.11(a), where R;, R;, and R; correspond to the ith basic modules

used in Hy(z), H(z), and Hi(z), respectively. Next, we can map Fig.11(a) to our video co-processor with

%In Fig.10, the data sample rate is reduced from f; to fs/2 after the downsampling circuit. As a consequence, the delay 272

at f, is equivalent to z~! at fs/2, and we use notations Ho(2), H(z), Hi(2) instead of Ho(2%), H(2?), Hi(z?) in Fig.10.
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the mapping

M3z;i41, (33)

fori =0,1,...,N/2—1. Besides, the interconnection network is set to Type II for the connections. Fig.11(b)
illustrates the realization of a 6th-order FIR by the use of 9 programmable modules. The detailed setting
of the video co-processor is described in Table 2 and 3.

Once the video co-processor has been initialized, the host processor can send data at f, rate to the
downsampling circuit in Fig.10. Then the outputs of the downsampling circuit, z;(n),i = 0,1,2, will be
processed by the three FIR subfilters in parallel at only fs/2 rate. After the subfilter outputs y;(n)’s are
generated, the FIR filtering output y(n) is reconstructed through the upsampling circuit in a fully-pipelined
way and the data rate for y(n) is back to f;.

As we can see, the only hardware overhead for this multirate operation is the downsampling circuit and
upsampling circuit in Fig.10 for the pre- and post-processing of the data. Since we need N/2 modules for
the implementation of each subfilter, a total of 3N/2 modules will be used for a Nth-order FIR filter. That
is, the system performance is doubled at the expense of 50% hardware overhead. Nevertheless, this overhead
is handled by simply activating more modules in the array and reconfigurating the interconnection network

rather than implementing it explicitly.

3.2 Multirate ITR Architecture

For the IIR systems, the polyphase decomposition of the transfer function is not as straightforward as in
the FIR case. Given an IIR system

M .
1+ piz™
H(z) = —&L

= ~ .
1+ Z gzt
i=1

(M < N, M, N are even numbers), we first multiply (1 + YV | (—1)?g;2™%) in the numerator and denominator

(34)

of the transfer function. We then have

M . N o
(42 meM0H209) ) ) 4 )

H(z) = ' =

e (39)
1+ Z (jiz_m
i=1

D(z%) D(2%)

where Ny(z2) and Nj(2?%) are the polyphase components of the new numerator, N(z), and §’s are given by

i {(—1)"q?+ 26(=1) 4021, if i< (36)

q; = . —— : . .
(-1 + TN (~1an—jari-ng,  if >

oz vl
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Thus, the polyphase decomposition of H(z) can be written as

H(z) = Hy(2%) + 27 Hy(2?) (37)
with No(2 )
Ho(2%) = DO((;))’ Hy(2%) = JZ)I—((:QS)‘ (38)

Note that the maximum order of Hy(z) and H;(z) is still N; d.e., the orders of the subfilters do not
decrease after the decomposition. This indicates that the use of Fig.10 will triple the hardware cost. The
implementation of the IIR multirate filtering is similar to the FIR case. We first implement each of the
subfilters, Hy(z), H1(2), and H(z) = Hy(z)+H1(z), using the cascade IIR structure discussed in Section 2.3.
The corresponding parallel architecture is shown in Fig.12(a), where { A;0(2), 4;1(2) }, { Aio(2), Ai1(2) },
and { 4;0(2),4;1(2) },i=0,1,...,N/2—1, are the subfilters of Hy(z), H(z), Hi(2), respectively. Then it
can be mapped to our co-processor architecture by

z‘:li,o(z) — Ms;, filz‘,o(z) — M3, /?z',o(z) —> M3iy4, (39)
Aia(z) — Msiy1, Aii(2) — Maiys, Aji(2) — Mais,

K )

for i = 0,1,...,N/2 — 1. Fig.12(b) demonstrates the multirate 4th-order IIR architecture using 12 pro-
grammable modules. The detailed settings of the modules and interconnection network can be found in

Table 2 and 3. In general, we will need 3N modules to realize a Nth-order multirate IIR filter.

3.3 Multirate Discrete Transform Architecture

The multirate DT architecture was discussed in [12], in which the multirate computation of the DT is
applied to low-power VLSI implementation of the transform-coding kernels. Since the multirate DT in [12]
is derived based on the second-order IIR in direct form, it is not applicable to the programmable architecture
proposed here. We will derive the rotation-based multirate DT architecture so that it can be incorporated
into our co-processor design.

Splitting the input data sequence, z(n),i =0,1,..., L, into the even sequence
ze(n) = z(2n), n=0,1,...,L/2 -1, (40)

and the odd sequence
zo(n) =z(2n+1), n=0,1,...,L/2 -1, (41)

(16) and (17) can be rewritten as

Lj2-1 L/2-1
Xo(k) = B Y cosl(4n+ Dwg +m]ze(n) + B Y cos[(dn + 3)wp + ne] zo(n)
n=0 n=0

= XC,e(k) +XC,o(k)’ (42)
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L/2-1 L/2-1
Xs(k) = B Z sin[(4n + Dwg + ] ze(n) + B Z sin[(4n + 3)wg + nk] z,(n)
n=0 n=>0
= Xg,e(k) + Xs,0(k), (43)
for k=0,1,...,N —1. Following the derivations in [7][8], it can be shown that we can use the rotation-based

module in Fig.6(a) for the dual generation of X¢ (k) and Xg .(k) by setting

fo,k Bcos((2L + 1wy + nx) cos(4wy) sin(4wg)
fk,e = ~ = . 3 Rk,e = 3 . (44)
fig Bsin((2L + Lwg + n%) —sin(4wg) cos(4dwy)
Similarly, the same module can be used to obtain X¢ ,(k) and Xg ,(k) with the setting
f 2L +3 4 in(4
o= for | _ ﬂC?S(( + 3)wk + %) . Ri,= C?S( wg)  sin(dwg) | (45)
ik Bsin((2L + 3)wy + nx) —sin(4wg) cos(dwy)

The parallel architecture to realize (42)-(45) is depicted in Fig.13(a). The input data sequence z(n) is
first decimated into z.(n) and z,(n) through the decimator (the extra delay element on the top is used
to synchronize the two output sequences so that they can arrive at the two rotation modules at the same
time.). Then X¢ (k) , Xs,e(k), X¢,0(k), and Xg (k) are generated by the two modules in parallel and the
outputs are summed up to obtain X¢ (k) and Xg(k).

The multirate DT architecture can be mapped to the co-processor design by setting the parameters
fr e, Rie to module My and fy o, Ry o to Magyy, for k =0,1,... ,N/2 — 1. Fig.13 shows the multirate 4-
point DHT architecture based on 8 programmable modules. There are two parts inside the interconnection
network: One is the summation circuit to combine the even and odd outputs of the array. The other is
the circuit to perform the combination function defined in Table 1. In real implementation, we can either
add one summation circuit so that the switch settings for the DT in Table 3 can still be used, or we can
define new switch settings by merging these two circuits together. The hardware overhead to perform the

multirate DT is the doubled complexity.

3.4 Design Examples Using Multirate Operations

3.4.1 Multirate FIR Filtering

Given the FIR transfer function in (26), we first perform the polyphase decomposition which yields
Ho(z) = 1-—0.1327z71 +0.532827% +0.103827% 4 0.219527*,

Hy(z) = —0.8843 —1.121927! —0.8882272 — 0.378627% — 0.10942™*,
H(z) = 0.1157 — 1.2546z7! — 0.3554272 — 0.274827% + 0.11012™*. (46)



System Architecture of A Massively Parallel Programmable Video Co-Processor 15

Then we can follow the steps in (1)-(2) and (4)-(7) to find the parameters for each filter in (46). The results
are listed in Table 5(a).
3.4.2 Multirate IIR (ARMA) Filtering

Consider the ITR (ARMA) filter shown below

H(z) = 1 —0.4000z" +0.1600z2 A7
T 1-1.8192z71 4 2.05982~2 — 1.124823 + 0.34222~ (47)

We can find its polyphase components from (35)-(36) as

1+ 1.4921271 +0.2219272 + 0.054823

H —
o(2) 1+ 0.81002~1 + 0.834622 + 0.14462~3 + 0.11712~%’
H(z) = 1.4192 + 0.59202~! + 0.04312~2
' 1+ 0.8100z~1 + 0.83462~2 + 0.14462—3 + 0.11712~%’
- 2.4192 + 2.0841z71 + 0. “240. -3
() = 92 + 2.08412~1 + 0.265022 + 0.05482 (48)

1+ 0.81002~! + 0.83462~2 + 0.144623 + 0.11712—*"

Then the necessary parameters of each AMRA filter in (48) can be computed from (49)-(56) in Appendix.

the parameter settings for the programmable module are in Table 5(b).

3.4.3 Multirate 8-point DCT

The rotation parameters 8;’s and the scaling factors fo;’s, fi1,i’s for the modules operating on the even and

odd subsequences can be found by using (44) and (45), respectively. See settings in Table 5(c).

4 Incorporation of the QRD-LSL Architecture

In the last part, we will incorporate the feature of adaptive filtering into the co-processor design. We will
show that, with little modification of the programmable module design, the proposed co-processor can also

perform the QR-decomposition based recursive least-squares lattice (QRD-LSL) algorithm [9].

4.1 CORDIC Operation and QRD-LSL Architecture

The CORDIC is capable of evaluating various rotation functions based on the shift-and-add operations [5].
There are two operation modes in the CORDIC processor: one is the vector rotation mode (see Fig.14(a))
which will rotate the 2-input vector for a given angle . Let W be the total iteration number in CORDIC
algorithm. In real implementation, the rotation is performed by feeding a sequence of 1, p;,7 = 0,1,..., W,
to the CORDIC processor. Suppose that the rotation circuit inside our programmable module is implemented
using the CORDIC processor. The values of u;,’s can be calculated in advance and will be loaded to the
module array during the initialization mode. On the other hand, the CORDIC in angle accumulation mode

(see Fig.14(b)) is to rotate the input vector until one of input components is annihilated; meanwhile, the
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Pout Sequence that reflect the performed rotation are generated. In the applications of adaptive filtering, we
will use this mode for the updating of the RLS parameters.

The QRD-LSL algorithm is one of the most promising candidate for the implementation of the recursive
least-square (RLS) adaptive filtering. Fig.15(a) shows the overall architecture to perform the linear predic-
tion. The readers may refer to [9][13, Chap.18] for detailed operations. The QRD-LSL can be implemented
using the CORDIC processors by replacing the angle computer with CORDIC in angle accumulation mode
(Ra(0)), while the rotator is replaced with CORDIC in vector rotation mode (Rg(8)). The resulting system
is shown in Fig.15(b), where the dashed lines denote the data paths for the u sequences. The p; sequences
will be first computed by the R4(#)’s using the forward and backward signals at each stage. Later the
generated pu; sequences will be sent to Rg(0)’s to rotate the signals at each stage. The CORDIC-based
QRD-LSL can be considered as a special case of the CORDIC-based QRD-RLS array discussed in [5].

4.2 Mapping QRD-LSL to the Programmable Video Co-processor

From Fig.15, we observe that the basic modules used in QRD-LSL are very similar to our programmable
module. Also, the connections can be easily handled by the interconnection network. We thus modify the
programmable module by adding one direct path as well as one more switch for selecting this new path.
On the other hand, one input port for u;, and one output port for p,,; are also added for the propagation
of the rotation parameters (see Fig.16). Now using the new programmable module, we can implement the
QRD-LSL in a very straightforward way. The detailed settings of the module array as well as the connection
type can be found in Table 2 and 3. Fig.17 shows the implementation of a 4th-order QRD-LSL based on
our programmable co-processor, where the adaptive filtering is performed in a fully-pipelined way without

any feedback path.

5 Conclusions

In this paper, a programmable video co-processor design for numerically intensive front-end video/image
communications is presented. The proposed parallel architecture can perform various functions (FIR/QMF/
IIR/DT/QRD-LSL) for the host processor by simply loading the suitable parameters and reconfigurating
the interconnection network. The parallel design as well as the fully-pipelined operation of the co-processor
architecture retains all advantages of the ASIC design but is much more flexible. Moreover, the architecture
is regular and modular. As a consequence, they are very suitable for VLSI implementation.

We also showed that we can reconfigurate the video co-processor to perform the multirate FIR/IIR/DT
with only two additional small circuits for the down- and up-sampling operations. The significance of the
feature is twofold: Firstly, we can speed up the performance of the co-processor since the processing elements
can now process data that are twice as fast as its processing speed. Secondly, the multirate operation can be
applied to the low-power implementation as discussed in [12]. In most low-power VLSI designs, the supply
voltage is usually reduced to lower the total power consumption. However, the device speed will be degraded

as the supply voltage goes down. In [12], it has been shown that the multirate scheme can “compensate”
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the increased delay caused by the low supply voltage without hindering the system performance. Thus,
the co-processor can have a switch for the supply voltage. Under normal operation, the supply voltage
is 5V. When the job is not computationally demanding, the supply voltage is switched to 3.1V and the
co-processor switched to multirate mode. The system will still maintain the processing speed even though
each processing element inside the module has been slowed down by the reduced voltage.

Another interesting application is to incorporate the DCT-based motion estimation (ME) scheme [22][10]
into our co-processor design. Since the DCT-based ME requires DCT/DST as a basic processing kernel,
and the computations is inherently highly local operation, the programmable co-processor can be modified

to perform the function of ME.

Appendix
Conversion of Parameters for the second-order IIR Lattice Filter
Fori=0,1,...,N/2 1,

1. Find the poles of H;(z):

—a; + 1/a? — 4b; —a; — /a2 — 4b; (49)

Poi = 9 y D= 9

2. (a) For the case 1/a? — 4b; < 0 (complex conjugate poles at r;e¥%), compute the radius r; and
phase 6#; of the poles:

r; = mag(pos), 0; = arg(po;)- (50)

(b) For the case 4/a? — 4b; > 0 (two real poles at po; and p;;), compute r; and 6; by equating

(51)

2r;cos6, = poi + p1;
riz = Po,; * P1,i»

which yields

Ty = 4/P0, ' Pl (52)
0. = COS_l Po,it+P1,:
r 2,/P0,.'P1,i

3. Solve ko and k; used in A;o(z) by setting

’ri(ko cos6; + k1 sin Oi) =1
"—T'Zki(] =0

which yields

{ ko =0 (54)
kl = 1/(7’2‘ Sinai).
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4. Solve kg and k; used in A;1(2) by setting

ri{kg cos8; + k1 sin;) = ¢;
1(20 % 1 z) ] (55)
which yields
ko = —d; /12
0= —di/ri (56)
k:l = (ci/T'i - ko COSei)/Sinei.

end.

All r;’s should be less than one to ensure the stability of the IIR filtering. There are some limitations in
this realization: Firstly, we cannot realize the second-order IIR which has two multiple real poles or two
real poles with opposite signs (r; in (51) cannot be solved). In some cases, this situation can be avoided by
arranging the real poles with the same sign as a pair or imposing such constraints in the design phase of
the filter. Secondly, the order of the ARMA filter is restricted to be even to facilitate the decomposition in
(12).
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IR P

DCT N | & T 0 Xper(k) = Xco(k)

IDCT N a | gwk+3 —Wk Xipor(k) = Xo(k) + (€ — & )z(0)
DST-IVin{23] | N & s+ 3 0 Xpst(k) = Xs(k)
IDST-IVin [23] || N | & | &(k+12) 0 XipsT(k) = X5(k)

MLT 2N | % kr Z(k+3) Xyprr(k) = —ce[ Xe(k+ 1) + Xs(k) |

ELT AN | 575 | swk+3) | 3(k+3) | Xprr(k) = —Xs(k+1) +V2Xo(k) + Xs(k - 1)

DFT N | 7 —kx —wr, Re{Xpp7(k)} = Xc(k), In{Xprr(k)} = Xs(k).

DHT N | F& —k —wh, Xpur(k) = Xc(k) + Xs(k).

Table 1: Parameter settings for the unified discrete transformation architecture, where Re{Xprr(k)} and
Im{Xprr(k)} denote the the real part and the imaginary part of the DFT, respectively.
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B eos((2L + 21 + V)wy, + 1) J .
cosdwy  sindwy
Multirate DT 000011 Beos((2L + 2L + Lwy +mg) —sindwy  cosdwy ’ Type £
with I = k mod 2, and L, 8, wg, th ws demned in Tabld 1 V-Vl z
7 defined in Table 1 WIth wy, defined In Table
1000101  (Myy)
RA(0) = My, M
QRD-LSL 1001101 (Mgpy1) [ L ] { RAEG; = Mg, Magt1 Type IX 2
1000100  (Myp o, Mgpi3) R(0) = Myp o, My 3

Table 2: Setting for the programmable module, where Ny, is the maximum order (or block size in DT)
that can be realized by a P-module array, and switch sg is only used in the QRD-LSL operation.
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Type I Type II Type III
(FIR, QMF) (Multirate FIR) (IIR)
. ing = z(n). .ty =z4(n), i=0,1,2. . iy =z(n), i=0,1.

Form=0,1,...,(N ~2)
M1 = OUbm,

Lt 1
My = OUbyy,.

For m=0,1,...,(N - 4)
inm+3 = outm,

’ 7
My t3 = 0Ulyy,.

For m=0,1,...,(N -3)
Mtz = OutgL%J +0’U,t2|_z2vij+1.

end

end end . y(n) = outn_1 + outn_2,
. y(’n) =outn—1. . y;(’l’l) =out(N_3)+i, Z=0,1,2 1=0,1.
Type IV Type V Type VI
(Multirate IIR) (DCT) (MLT)
. ing =ml%J(n), t=0,1,...,5.
Form=0,1,...,(N=-7) . in, = z(n), . tn, = z(n),

MNmte = outzL%J + outzL%Hl,
end

. yz(n) = OUt(N—5)+i +OUt(N—6)+i,
1=0,1,2.

i=0,1,...,N 1.

. Xpor(i) = out;,

i=0,1,...,N—1.

i=0,1,...,N—1.
. Xmrr(i) = —S()(out,41 + out;),
i=0,1,...,N—1.

Type VII Type VIII Type IX
(DFT) (DHT) (QRD-LSL)
. in; =z(n), 1=0,1.
Form=0,1,...,(N-3)
RS m(n)v Lin, = (B(’I’L), Z'nm-l-Z = oUlpm,

i=0,1,...,N—1.
. Xprr(i) = out, + j * out;,
1=0,1,...,N—-1.

i=0,1,...,N—1.

. Xpur(i) = out, + out’,,

i=0,1,...,N—1.

if (m mod 4 = 0) then

pin(m +3) = pout(m),
and

Hin (m+2) = /Jzout(m+1).
end

. f(n) =outn—2, b(n)=outn-1.

Table 3: Switch settings for the interconnection network.




System Architecture of A Massively Parallel Programmable Video Co-Processor

M, M, M, M My M; Mg My Mg
S 000100 | 010100 | 010100 | 100100 [ 100100 { 010100 | 010100 | 010100 | 010100
fo,i 0.8944 | 0.7222 | 0.8100 | 4.0352 | -0.5870 | 0.9641 | 0.9557 | 0.9922 | 0.9940
fi 0.8944 | 0.7222 | 0.8100 | 4.0352 | -0.5870 | 0.9641 | 0.9557 | 0.9922 | 0.9940
T; 1 1 1 1 1 1 1 1 1
; 0.4812 | 0.8512 | 0.6723 | 0.2454 | -1.3027 | -0.2720 | -0.3032 | 0.1249 | -0.1098
Interconnection Type 1
(a)
Mo M, Mg M3 M4 M5 Mﬁ M7 Mg My
S 010000 | 010100 | 010100 | 010100 | 010100 | 010100 | 010100 | 010100 | 010100 | 010100
fo 1 1 1 1 1 1 1 1 1 1
fii 1 1 1 1 1 1 1 1 1 1
r; 1 1 1 1 1 1 1 1 1 1
9; -1.2022 | 0.6993 | -0.4465 { 0.3051 | -0.2146 | 0.1511 | -0.1043 | 0.0690 | -0.0426 | 0.0311
Interconnection Type 1
(b)
Mo M M, M; M, M; Ms Mo Mg My
S 000011 | 001111 | 000011 | 001111 | 000011 | OO1111 | 00OOO11 | 001111 | 000011 | 001111
fo 0 -1.5148 0 -0.6400 0 0 0 0 0 0
il -2.1757 | 0.9467 | -1.5396 | 0.5543 | -1.4434 0 -1.5713 0 -1.2500 0
75 0.6500 | 0.6500 | 0.7500 | 0.7500 | 0.8000 0 0.9000 0 0.8000 0
0; -0.7854 | -0.7854 | -1.0472 | -1.0472 | -2.0944 0 -2.3562 0 -1.5708 0
Interconnection Type HI
(c)
Mo M, M, M; M,y M; M M
S 000011 | 000011 } 000011 | 000011 | 000011 | 000011 | 000011 | 000011
Jo,i 0.3536 | -0.4904 | 0.4619 | -0.4157 | 0.3536 | -0.2778 | 0.1913 | -0.0975
fii 0 -0.0975 | 0.1913 | -0.2778 | 0.3536 | -0.4157 | 0.4619 | -0.4904
5 1 1 1 1 1 1 1 1
8; 0 0.3927 | 0.7854 | 1.1781 | 1.5708 | 1.9635 | 2.3562 | 2.7489
Interconnection Type V
(d)

Table 4: Settings for the (a) FIR filter, (b) QMF filter, (¢) IIR (ARMA) filter, and (d) 8-point DCT.
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Mo M1 M2 Ma M4 M5 M6 M7 M8 MQ MIO Mll
S 000100 | 000100 | 000100 | 010100 | 100100 | 010100 | 010100 | 100100 | 010100 | 010100 | 010100 | 010100
fo,i 0.9878 | 0.1154 | -0.6574 | 0.8833 | -0.4092 | 0.8005 | 0.9902 | 84.0896 | 0.9613 | 0.9756 | 0.3073 | 0.9923
fri 0.9878 | 0.1154 | -0.6574 | 0.8833 | -0.4092 | 0.8005 | 0.9902 | 84.0896 | 0.9613 | 0.9756 | 0.3073 | 0.9923
I 1 1 1 1 1 1 1 1 1 1 1 1
0; -0.1571 | 0.0731 | 0.8086 | 0.5086 | -1.6262 | 0.6920 | 0.1406 | 0.0119 | 0.2827 | 0.2231 | 1.8484 | 0.1244
Intercon- T I
nection ype
(a)
Moy M, M2 M3 M, Ms Ms My Mg My Mio My
S 000011 | 001111 | 000011 } 001111 | 000011 | 001111 | 000011 | 001111 | 000011 | 001111 | 000011 | 001111
fo,i 0 -0.0614 0 -0.1104 0 -0.0657 | -7.6102 0 -4.2364 0 0 0
fi 1.4256 | 0.1551 | 3.4488 | 0.2992 | 2.0232 | 0.8060 | 2.3669 0 2.3669 0 2.3669 0
T3 0.8100 | 0.8100 | 0.8100 | 0.8100 | 0.8100 | 0.8100 | 0.4225 | 0.4225 | 0.4225 | 0.4225 | 0.4225 | 0.4225
0; 2.0944 | 2.0944 | 2.0944 | 2.0944 | 2.0944 | 2.0944 | 1.5708 | 1.5708 | 1.5708 | 1.5708 | 1.5708 | 1.5708
Intercon-
nection Type IV
(b)
M() M1 M2 M3 M4 M5 Mﬁ M7
S 000011 | 000011 | 000011 | 000011 | 000011 |} 000011 | 000011 § 000011
fo, 0.5000 | 0.5000 | -0.6533 | -0.2706 | 0.5000 | -0.5000 | -0.2706 | 0.6533
fi4 0 0 -0.2706 | -0.6533 | 0.5000 | 0.5000 | -0.6533 | 0.2706
T 1 1 1 1 1 1 1 1
0; 0 0 0.3927 | 1.1781 | 0.7854 | 2.3562 | 1.1781 | 3.5343
Interconnection Type V
(c)

Table 5: Settings for the (a) FIR filter, (b) IIR (ARMA) filter, and (c) 8-point DCT under multirate
operation.
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Figure 1: (a) Basic lattice filter section with |k;| < 1. (b) Basic lattice filter section with |k;| > 1. (c) Lattice

FIR structure.
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Figure 2: The two-channel paraunitary QMF lattice: (a)(b) Basic lattice section. (c) The analysis bank.
(d) The synthesis bank.
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Figure 3: (a) All-pole IIR lattice. (b) General ITR (ARMA) lattice.
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Figure 4: Second-order IIR lattice architecture.
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Figure 5: IIR (ARMA) structure based on the second-order IIR lattice module.
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Figure 6: SIPO MLT architecture: (a) Rotation-based module for the dual generation of X¢(k) and Xg(k),
where the downsampling operation | L at the right end denotes that we pick up the values of Xc¢(k)
and Xg(k) at the L** clock cycle and ignore all the previous intermediate results. (b) Overall transform
architecture.
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Figure 7: (a) Programmable module for the FIR/QMF /IIR/DT. (b) Switches used in the module.
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Figure 8: Overall architecture for FIR filtering.
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Figure 9: Overall architecture for IIR (ARMA) filtering.
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Figure 10: Multirate filtering architecture, where f; is the data sample rate.
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Figure 11: (a) Multirate FIR based on the lattice structure. (b) Mapping part (a) to the co-processor archi-
tecture: The figure demostrates the multirate 6th-order FIR architecture using 9 programmable modules.
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Figure 12: (a) Multirate IIR based on the lattice structure discussed in Section 2.3. (b) Mapping part (a)
to the co-processor architecture: The figure demostrates the multirate 4th-order IIR architecture using 12
programmable modules.
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Figure 13: (a) Multirate architecture for the dual generation of X (k) and Xg(k). (b) Multirate 4-point
DHT architecture based on 8 programmable modules.
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Figure 14: (a) CORDIC in vector rotation mode.
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Figure 16: (a) New programmable module with the QRD-LSL feature. (b) Switches used in the module.
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